Rational Points on Cubic Hypersurfaces That Split off a Form

نویسنده

  • T. D. Browning
چکیده

— Let X be a projective cubic hypersurface of dimension 11 or more, which is defined over Q. We show that X(Q) is non-empty provided that the cubic form defining X can be written as the sum of two forms that share no common variables.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Looking for Rational Curves on Cubic Hypersurfaces

The aim of these lectures is to study rational points and rational curves on varieties, mainly over finite fields Fq. We concentrate on hypersurfaces Xn of degree ≤ n+ 1 in Pn+1, especially on cubic hypersurfaces. The theorem of Chevalley–Warning (cf. Esnault’s lectures) guarantees rational points on low degree hypersurfaces over finite fields. That is, if X ⊂ Pn+1 is a hypersurface of degree ≤...

متن کامل

RATIONAL POINTS ON CUBIC HYPERSURFACES OVER Fq(t)

The Hasse principle and weak approximation is established for non-singular cubic hypersurfaces X over the function field Fq(t), provided that char(Fq) > 3 and X has dimension at least 6.

متن کامل

Rational Points on Intersections of Cubic and Quadric Hypersurfaces

We investigate the Hasse principle for complete intersections cut out by a quadric and cubic hypersurface defined over the rational numbers.

متن کامل

Counting Rational Points on Cubic Hypersurfaces

Let X ⊂ P be a geometrically integral cubic hypersurface defined over Q, with singular locus of dimension 6 dimX − 4. Then the main result in this paper is a proof of the fact that X(Q) contains Oε,X(B ) points of height at most B.

متن کامل

The Topology of Rational Points

Introduction 1. Comparison of Density Conditions 2. Curves 3. Conic Bundles over P 4. Smooth Cubic Hypersurfaces 5. Smooth Complete Intersections of Two Quadrics in P 6. Elliptic Surfaces 7. Some Abelian Varieties 8. Some Kummer Surfaces 9. Some Other K3 Surface Examples References The aim of this article is to provoke a discussion concerning the general nature of the topological closure of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009